Noetherian Module
   HOME

TheInfoList



OR:

In
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The ter ...
, a Noetherian module is a
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modul ...
that satisfies the
ascending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These c ...
on its
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mo ...
s, where the submodules are
partially ordered In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary r ...
by inclusion. Historically,
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many ...
was the first mathematician to work with the properties of finitely generated submodules. He proved an important theorem known as Hilbert's basis theorem which says that any
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ...
in the multivariate
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
of an arbitrary field is finitely generated. However, the property is named after
Emmy Noether Amalie Emmy NoetherEmmy is the '' Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...
who was the first one to discover the true importance of the property.


Characterizations and properties

In the presence of the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, two other characterizations are possible: *Any nonempty set ''S'' of submodules of the module has a maximal element (with respect to
set inclusion In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
). This is known as the maximum condition. *All of the submodules of the module are finitely generated. If ''M'' is a module and ''K'' a submodule, then ''M'' is Noetherian
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bic ...
''K'' and ''M''/''K'' are Noetherian. This is in contrast to the general situation with finitely generated modules: a submodule of a finitely generated module need not be finitely generated.


Examples

*The
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s, considered as a module over the ring of integers, is a Noetherian module. *If ''R'' = M''n''(''F'') is the full
matrix ring In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication . The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'')Lang, ...
over a field, and ''M'' = M''n'' 1(''F'') is the set of column vectors over ''F'', then ''M'' can be made into a module using
matrix multiplication In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the s ...
by elements of ''R'' on the left of elements of ''M''. This is a Noetherian module. *Any module that is finite as a set is Noetherian. *Any finitely generated right module over a right
Noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
is a Noetherian module.


Use in other structures

A right
Noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
''R'' is, by definition, a Noetherian right ''R''-module over itself using multiplication on the right. Likewise a ring is called left Noetherian ring when ''R'' is Noetherian considered as a left ''R''-module. When ''R'' is a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not ...
the left-right adjectives may be dropped as they are unnecessary. Also, if ''R'' is Noetherian on both sides, it is customary to call it Noetherian and not "left and right Noetherian". The Noetherian condition can also be defined on
bimodule In abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in t ...
structures as well: a Noetherian bimodule is a bimodule whose
poset In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary r ...
of sub-bimodules satisfies the ascending chain condition. Since a sub-bimodule of an ''R''-''S'' bimodule ''M'' is in particular a left ''R''-module, if ''M'' considered as a left ''R''-module were Noetherian, then ''M'' is automatically a Noetherian bimodule. It may happen, however, that a bimodule is Noetherian without its left or right structures being Noetherian.


See also

*
Artinian module In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if ...
* Ascending/descending chain condition * Composition series *
Finitely generated module In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts in ...
*
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally th ...


References

{{Reflist * Eisenbud ''Commutative Algebra with a View Toward Algebraic Geometry'', Springer-Verlag, 1995. Module theory Commutative algebra de:Emmy Noether#Ehrungen